Carbon and Capitalism

  • Carbon Tax
  • Cap & Trade
  • Regulatory micro-management

None of them looks feasible.

A carbon tax of, say, $20–30/ton of carbon wouldn’t raise the cost of energy by much, most people would probably be OK with it. But it also wouldn’t do any good. To actually incent the replacement of our current fossil-fuel-based energy infrastructure with “carbon-neutral” energy, it would have to be more like $200/ton, which would have devastating effects on the economy and people’s quality of life.

I have some ideas…

Let’s start with the current situation. The installed cost of utility grade solar power has been dropping exponentially: by about half every 4–5 years. I’ve discussed this in more detail here.

Price History of PV cells through 2015, from Here (Public Domain).
Semi-log Graph of Global PV Capacity, from Here (Public Domain).
“Swanson’s Law” for PV Log/Log graph, from Here (Public Domain).
Small storage pool created with bulldozer and plastic sheeting (from here).
Hirono Nigo Ike — 1,261 kWp — Solar on Water (from here).

Target End State

Over the long run, solar (and perhaps wind) power are the target sources for carbon-neutral energy. Although both require a much more “spread out” deployment than combustion plants such as coal or gas turbines, when you put it in perspective it’s actually rather small.

North American Available Solar Power, from Here. Note that this includes the effect of clouds, as can be seen from the way it varies by longitude and location of mountain ranges.


The key to using intermittent energy is storage, since otherwise it will never be able to replace more than a fraction of fossil energy. Storage comes in several time-scales, requiring different logic:

  • Seconds and Minutes. This sort of storage is needed to smooth sudden changes in demand on the grid, and perhaps cloud effects on solar energy. While several technologies are in use today, it’s likely that super-capacitors and perhaps batteries will ultimately fill this need.
  • Hours. In today’s grid, hour-scale storage is needed to smooth start-up and shut-down of power plants, and to help transfer excess from wind and solar to when it can be used. The primary form today is pumped hydro, which is mature technology, and along with rain-fed hydropower can smooth sudden changes all the way down to scales of minutes.

    A variety of technologies are envisioned for this in the future, including batteries, flywheels, compressed air, and thermal. Except for lithium-ion batteries based on cell-phone batteries, all of these types are barely off the lab bench, and are unlikely to compete effectively.

    Electric auto/truck batteries also fall into this range, and are also currently lithium-ion batteries. Lithium-ion battery prices have been dropping recently, and appear to be in the same sort of exponential growth and price reduction loop as solar.
From Here.
  • Daily. This is the most important for solar. Near-term, solar energy will probably outstrip the needs of the grid for only an hour or two on hot days, but as it gets cheaper, and capacity grows, progressively more excess energy will be available during daily peaks, and if this can be stored until late afternoon and night it can continue to replace fossil-based energy.

    Pumped hydro is most likely (IMO) to fill this need to start with, especially in the US Southwest where existing dams can be fitted with large capacities of pumped storage without adding much but pumps/generators. As costs of battery storage come down and existing dams are built out, batteries will probably replace new pumped hydro.
  • Seasonal/Annual. The amounts of energy needing storage for balancing annual variations in solar power, especially for more temperate latitudes, will probably be too much for battery storage for at least a decade, probably more. Existing hydropower will help, but there is another technology that is well suited to this, despite rather low turnaround energy efficiency. This is discussed next.

Power to Gas/Fuel (P2G/F)

This is basically the process of taking electric power, using it to split water into hydrogen and oxygen, then combining it with ambient CO2 (from the air or ocean surface, it’s interchangeable) to create methane or hydrocarbon fuels.

CO2 Remediation

“Remediation” is the process of correcting something that has gone out of bounds. As applied to the fossil carbon humanity has been dumping into the system, it refers to pulling it back out of the air/ocean/soil system and sequestering it: putting it somewhere it can’t get back into the system from.



Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store